If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-20=12x
We move all terms to the left:
9x^2-20-(12x)=0
a = 9; b = -12; c = -20;
Δ = b2-4ac
Δ = -122-4·9·(-20)
Δ = 864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{864}=\sqrt{144*6}=\sqrt{144}*\sqrt{6}=12\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-12\sqrt{6}}{2*9}=\frac{12-12\sqrt{6}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+12\sqrt{6}}{2*9}=\frac{12+12\sqrt{6}}{18} $
| -2(2s+5)=-2 | | -2(2s+5=-2 | | 6×-3x=-24 | | 5.3+9=5.x+9 | | 1/2x+2=2x-1 | | 2(f-6=-16 | | 10(s-5)=-106 | | 8x-2-2x=-6+6x+14 | | n^2+6=10n | | 2x/x+2=2/3 | | 5p+7=3(4-p( | | 2(3s+7)=32 | | 4(2s+9)=76 | | 22x-9=11(2x-3) | | x=x^2-4x^2+8x-20 | | y+2=y+2 | | 24=n/10+32 | | y+2=y-2 | | -17+m/8=13 | | 9y2=y | | 4x+2x=-11 | | 2z+8=6z+12 | | 2x-142+x+16=360 | | 16+8x-25=-7(3-x)=3x | | (q-3)*5=25 | | 4/3x+9=3 | | 5n^2+n=120 | | (x+42)+(2x+1)=360 | | 3j(j-2)=2(j-2) | | F(n)=(-1)n×3 | | 4x+28=62+2x | | 10x+x^2=80 |